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SUMMARY

This paper deals with chaotic mixing in the journal bearing �ow. A recently developed mapping tech-
nique is used to study the dynamics of this well-known prototype mixing �ow. Eigenvalues and eigen-
modes of the resulting mapping matrix are used to reveal di�erent zones of mixing. Moreover, an
extension of the technique, adding an area tensor to described structure on cell level, is used to de-
termine rate of interfacial area during mixing. The technique is shown to be consistent with the more
consuming front tracking model. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Time-periodic Stokes �ow (Re�1) of a viscous incompressible Newtonian �uid in the gap
between two eccentric cylinders is considered. This is a well-known, experimentally realizable
chaotic prototype �ow extensively used for studying laminar mixing mechanisms (see for
example References [1; 7]), and has been considered in classical works on lubrication theory
[4; 5]. These papers describe the idealized �ow between the rotating journal and its cylindrical
support, when the gap is �lled by lubricating �uid (hence the name ‘journal bearing �ow’).
The fact that a chaotic �ow can easily be generated by rotating the cylinders in a time-periodic
fashion makes it a convenient prototype �ow to study mixing phenomena.
The geometry of the �ow domain is characterized by two dimensionless parameters: the

ratio of the radii of the inner and outer cylinder rin=rout, and the dimensionless eccentricity
e=d=rout, where d is the distance between the centres of two cylinders. The periodic �ow
is induced by rotating the cylinders using a discontinuous two-step protocol: during the �rst
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Figure 1. Examples of Poincar�e maps for the �ows with di�erent values of �: (a) �=0:5�; (b) �=1:0�;
(c) �=2:0�. The location of some �rst-order hyperbolic periodic points is shown by black circles.

The numbers indicate the corresponding maximum stretching values.

half-period the outer cylinder is rotated while the inner remains stationary; during the second
half-period the outer cylinder is �xed and inner one rotates. In the Stokes approximation the
�uid motion is completely de�ned by the rotation angles of the cylinders. Thus, the �ow
protocol can be described by two dimensionless parameters: the rotation angle � of the outer
cylinder and the ratio � of the rotation angle of the inner cylinder to that of the outer.
Following Muzzio et al. [7] the geometric parameters are set to rin=rout = 1=3, c=0:3 and the
ratio of the rotation angles is kept as �=3:0.
Figure 1 compares di�erent Poincar�e maps [8], providing an asymptotic picture of the

mixture, and reveals chaotic and regular regions for di�erent rotation angles. These maps
are calculated by tracking a limited number of markers for many periods and plotting their
position at every period. The �ow with �=0:5� (Figure 1(a)) contains a large number of
islands of di�erent order and a wide ring of regular �ow along the outer boundary. No �rst-
order periodic points are present. Periodic points are points which return to their original
position after one or more periods of �ow. They are classi�ed according to the nature of
the stretching in their neighbourhood. Elliptic (stable) periodic points are at the centre of
non-mixing regions, called islands, while hyperbolic (unstable) periodic points are centres of
stretching and folding in the �ow. The �ow with rotation angle �=� (Figure 1(b)) can be
regarded as more chaotic. It contains only two relatively large (period-2) islands in the bulk
of the �ow domain. The protocol with �=2� (Figure 1(c)) results in an almost globally
chaotic �ow, with no noticeable islands. It seems, however, that all chaotic �ows belonging
to this family of protocols have thin regular layers adjacent to both cylinders. In case of
�=2� a stable (elliptic) periodic point was detected near the inner cylinder—its position is
shown in Figure 1 by the non-�lled circular marker. Note that the islands that are not single
connected (in this �ow they enclose the inner cylinder) do not necessarily have to contain
a periodic point of appropriate order inside the island itself.
This paper discusses some numerical aspects of a ‘new’ method, the mapping method, to

study chaotic mixing �ows. The �rst part deals with the eigenvalues of the mapping matrix;
the second part studies interface stretching for di�erent grid sizes.
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2. BASICS OF MAPPING METHOD

2.1. The original mapping technique

The �ow domain � is divided into N non-overlapping sub-domains �i, with boundaries @�i,
and the mixture is described with coarse-grain concentration C, within each cell. The column
vector containing all the cell values at time tk is {C}k . The mapping method, based on ideas
suggested by Spencer and Wiley [9], advances these values over large, discrete time steps
using a matrix multiplication:

Ck+1i =
N∑
j=1
�ijCkj (1)

The mapping matrix � is constructed using the velocity �eld in the �ow domain and an
accurate adaptive interface tracking algorithm [3]. To obtain the mapping matrix the boundaries
@�i of the grid cells �i are tracked from the time tk to tk+1. This deformed grid is then laid
over the initial grid, and each matrix component �ij is computed as the area of overlap
between deformed cell j and undeformed cell i, divided by the total area of cell i:

�ij =
∫
�j|tk+1∩ �i|tk

d�

/∫
�i|tk

d� (2)

The resulting matrix can be very large (in the examples of this paper it has 3:6× 109 elements),
but is normally essentially sparse [6].
First, properties of the eigenvalues of the mapping matrix and their corresponding eigenvec-

tors are discussed. As these vectors actually describe the �eld of concentration, we will call
them ‘eigenmodes’. Note that, while real eigenmodes describe the concentration distribution
(or its perturbation, as we will see later), the physical meaning of complex eigenmodes is not
clear. The following simple linear norm for the real positive distribution vector C, de�ned as

M (C)=
N∑
i=1
CiSi (3)

where Si is the area of the cell number i, determines the total volume of the �uid that
corresponds to this concentration distribution. For brevity we will refer to such a norm as the
mass of the distribution (eigenmode), including the cases of any type of eigenmodes. The
mapping transformation preserves the mass of the �uid, thus it can be shown that for any
distribution C the norm M (C) is preserved,

M (�C)=M (C) (4)

since the mapping, de�ned by Equations (1) and (2) merely redistributes all the �uid in the
system.
This mass conservation has an interesting implication for the eigenvalues and associated

eigenmodes. If C� is an eigenmode associated with eigenvalue �, it means that

�C�= �C� (5)

Since the norm M is linear,

M (�C�)=M (�C�)= �M (C�) (6)
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Taking into account Equation (4) we get

�M(A)=M(A) (7)

Thus, for any eigenvalue such that � �=1 we necessarily obtain that the mass of the cor-
responding eigenmode must be equal to zero. Such an eigenmode with zero norm can be
considered as a perturbation applied to a uniform concentration distribution. The magnitude
of |�| then controls the rate of decay of this perturbation. There is always one eigenvalue
�=1 that corresponds to a uniform distribution. Ideally, if there are other eigenvalues with
|�|=1 they describe non-decaying modes associated with zones of the �own between which
there is no material exchange. Some of these zones represent regular islands, other corre-
spond to isolated chaotic regions (it is possible to have di�erent chaotic regions, which do
not exchange material).
The meaning of the complex eigenvalues and eigenmodes may be explained by the follow-

ing considerations. Suppose that there is a system with n islands of period n and the grid is
ideally �tted to them: islands boundaries coincide with the cell boundaries (thus, no numerical
di�usion). We assume that there are eigenmodes responsible for these islands. Since after n
mappings the distribution must be completely recovered, we get �n=1. This gives us the
possibility to think that there are n eigenvalues: namely the nth-order complex roots of 1. As
the simplest example, negative real eigenvalues can correspond to second-order periodicity,
since (±1)2 =1 (here we are considering all complex roots).
If the boundaries of the mapping sub-domains do not match exactly with the boundaries

of these isolated zones, numerical di�usion will cause the gradual erasing of the perturba-
tion. Thus, computed eigenvalues will have absolute values less than 1. Slow decay of the
disturbance (|�| close to 1) still can serve as an indication of rather slow exchange between
di�erent zones of the �ow.

2.2. The extended mapping method

A useful interfacial area measure, which includes orientation, is the area tensor [10]. The
second-order area tensor A is de�ned as

A=
1
V

∫
�
nn d� (8)

The components of the area tensor have units of interfacial area per unit volume, and the
trace of the tensor equals the total interfacial area per unit volume

traceA= SV (9)

so traceA is a useful scalar measure of microstructural mixing. The averaging volume V
should be large enough to provide a representative sample of the microstructure, but smaller
than the scale over which the microstructure varies. The extended mapping method now
updates the area tensor at each time step according to

Ak+1i =
N∑
j=1
�ij(Akj ⊗F−1

ij ) (10)

That is, the area tensor in any cell at time k + 1 is the sum of contributions from all
donor cells, after the donor tensors from time k have been transformed by the appropriate
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Figure 2. (a) The eigenvalues of the full-period mapping matrix for the �ow with
�=� and �=3. (b) Eigenvalues for �=0:5�. The �ve eigenvalues correspond to a

system of period-5 islands are marked with circles.

deformation gradients. The symbol ⊗ denotes the transformation of the area tensor under �nite
strain which converts an initial area tensor A0 to an equivalent droplet shape tensor [2] G0,
�nds the droplet shape tensor G in the deformed state, and then transforms G back to �nd
the deformed-state area tensor A. Equations (10) and (1) constitute one step of the extended
mapping method. All details of the conversion between A and G and on the validation of the
extended mapping method can be found in Reference [2].

3. RESULTS

3.1. Eigenvalues and eigenvectors for mapping matrices

We consider the mapping matrices for the full period of the �ows with �=3 and �=� and
0:5�, respectively. Unlike the rest of the paper, a rather coarse grid, containing only 2400
sub-domains is used. This makes it possible to compute all eigenvalues and, if necessary, the
corresponding eigenvectors. Figure 2(a) shows the location in the complex plane of all the
eigenvalues of the full-period mapping matrix for the �ow with �=� and �=3. We focus
on the real eigenvalues with the largest absolute values.
First, an eigenvalue �0 =1 is observed that corresponds to a trivial eigenmode Ci=const

describing a uniform density distribution. We also examined few other real eigenmodes with
large absolute values. They provide some essential information about the material transport in
the �ow under study. Figure 3 shows the eigenmodes, corresponding to the values �1 = 0:9867,
�2 = 0:9071 and �3 =−0:9722.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:189–196



194 P. D. ANDERSON ET AL.

Figure 3. The real eigenmodes (perturbation of concentration) of the full-period mapping matrix for
the �ow with �=� and �=3. The eigenmodes correspond to the eigenvalues: (a) �1 = 0:9867, (b)

�2 = 0:9071, (c) �3 =−0:9722.

The slowest-decaying eigenmode, which corresponds to �1 = 0:9867, is shown in the
Figure 3(a). It demonstrates that there is only very slow exchange of material between the
wide ring adjacent to the outer cylinder and the rest of the �ow domain. From the Poincar�e
map (Figure 1(b)) is known that this ring contains two period-2 islands. It was suggested
above that periodic structures of the second order should reveal themselves through the pres-
ence of the real eigenvalue close to −1. Figure 3(c) shows the eigenmode that corresponds
to �3 =−0:9722. Bright and dark regions in the plot, corresponding to positive and negative
values of concentration disturbance, are clearly seen in the outer layer of the �ow domain.
Since the eigenvalue �3 =−0:9722 is negative, the material contained in these two zones is
being swapped after each period of the �ow. The eigenmode that corresponds to �2 = 0:9071
is shown in Figure 3(b). It indicates that there is also a zone around inner cylinder that ex-
changes material with the rest of the domain rather slowly. The Poincar�e map in Figure 1(b)
shows that there is actually a thin ring-shaped island enclosing the inner cylinder. We can
see that eigenmodes of real eigenvalues of the full-period mapping matrix can indeed reveal
the nearly isolated zones of the �ow.
Since higher-order periodicity is associated with complex eigenvalues, it is of interest to

examine the �ow with �=0:5� and �=3, because it contains the system of �ve islands of
�fth order, revealed by the Poincar�e map (Figure 1(a)). The corresponding mapping matrix
in fact possesses eigenvalues close to the complex roots 3

√
1. These eigenvalues, marked with

circles in Figure 2(b), are situated near the vertices of a regular pentagon. The real parts
or absolute magnitude of the corresponding eigenmodes indicate that these eigenvalues are
related to the above-mentioned period-5 islands.
The eigenvalue pattern also shows four distinct ‘lea�ets’ of high absolute values near the

real and imaginary axes. We believe that these lea�ets are caused by a behaviour close to
fourth-order periodicity in the outer ring of the �ow domain. This becomes clear if we notice
that actually every point on the outer boundary returns to its original location after four
periods, since �=0:5�.
Comparing the two plots in Figure 2 we can see that for the �ow with �=� the eigenvalues

are grouped more densely around the origin (0; 0). This serves as an indication that most of
the perturbation in this �ow decays faster than in the �ow with �=0:5�.
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Figure 4. Comparison of the mapping and front tracking results. Top row shows initial distributions,
bottom—after one period of the �ow with �=2� and �=3.

3.2. Interfacial area generation

The deformation of a blob, depicted in the upper row of Figure 4 was computed for three
di�erent �ows with �=0:5�, � and 2� (in all three cases �=3) by using both front tracking
and the extended mapping approach. The total length of the interface was recovered from the
mapping results as a sum over all sub-domains (cells):

L=
N∑
i=1
Si traceAi (11)

when Ai, is the area tensor in the sub-domain number i that has an area equal to Si.
Figure 4 compares the mapping and tracking simulations. The concentration, plotted in

the middle, is captured quite well by the mapping method. The plots on the right show the
extended mapping results, in particular traceA. The interface is captured remarkably accurately.
Figure 5 shows quantitative comparisons for mapping and tracking for di�erent mapping grids.
Consistency of the mapping method is shown to be independent on the rotation angle �. The
prediction of interfacial area is very accurate for the journal bearing �ow. In previous work [2],
mixing in the rectangular lid-driven cavity �ow was studied and there the prediction of the
growth of interfacial area was signi�cantly less accurate and over-predicted due to the presence
of corner singularities.
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Figure 5. Left: interface stretching obtained using front tracking and extended map-
ping technique for di�erent mapping grids and �=0:5�, �, and 2�. On the right,

quantitative comparisons are shown for �=2�.

4. CONCLUSIONS

The paper discusses numerical aspects of the mapping method. The �rst part of the paper
considers the eigenvalues of the mapping matrix for two di�erent journal bearing �ows. Nu-
merical results reveal di�erent zones of mixing via the eigenmodes, and the rate of mixing
follows from the corresponding eigenvalues.
In the second part of the paper numerical results for the extended mapping method are

presented. Accuracy of the technique is shown by comparison with front tracking results for
di�erent grids. Interface stretching is calculated accurately even on rather coarse grids, and
consistency of the technique is demonstrated.
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